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Abstract-The finite element method is used together with the variational principle of the local potential to 
obtain approximate numerical solutions for steady-state laminar natural convection from the open vertical 
channel with uniform wall temperature. The natural boundary conditions generated by the variational 
technique are invoked at the channel entrance and exit. The restriction has so far been observed that fluid 
velocity may be vertical only. Temperatures and upward velocities respectively are obtained for Rayleigh and 
Grashof number ranges from 0.1 to 10’. Nusselt and Reynolds number correlations compare very closely 
with those for the finite difference solution by Bodoia and Osterle, and less well with a solution for the single 

vertical wall. 
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area of element e; 
channel width; 
width-to-height ratio of 

b 
channel = 5 ; 
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functional defined by 4 = E ; 

part of functional pertaining 
to the system boundcy; 
equivalent functionals for 
momentum and energy equations 
respectively; 
gravitational acceleration; 
heat absorbed by fluid from 
entrance to exit; 
dimensionless heat-transfer rate; 
thermal conductivity of fluid; 
height of channel; 
proportional error in pressure 
fall; 
fluid pressure; 
hydrostatic fluid pressure; 
dimensionless volume flow rate; 
time; 
dimensionless time = 7 ; 

temperature; 
channel wall, ambient fluid 
temperature; 

dimensionless temperature 

T-T, 

=T,-T,; 

dimensionless temperature which 
minimises the functional E; 
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dimensionless temperature for 
node i; 

fluid velocity in x, y, directions; 
dimensionless fluid velocity in 

ub2 
x-direction = - ; 

vGr1 

dimensionless velocity which 
minimises the functional E; 

dimensionless velocity in 
x-direction for node i; 

Cartesian coordinate system; 
dimensionless Cartesian coordinate 

x Y 
system = -, - ; 

1 b 

convection coefficient of heat 

h 
transfer = 

I(T,-T,); 

fluid coefficient of expansion; 
thermal diffusivity; 
kinematic viscosity; 
density; 
thermodynamic potential; 
Grashof number; 
Nusselt number: 

Prandtl number = 1; 
K 

Rayleigh number = Gr x Pr; 

Reynolds number; 
shape function; 
matrix K; 
column matrix 0. 

1. INTRODUCTION 

THE FINITE element method is, like the finite difference 
method, a discretisation technique which approx- 
imates a problem described by a system of differential 
equations, by a large number of algebraic equations 
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which may be solved by digital computer. Perhaps the 
most common way to apply the finite element method 
is to take a physical problem which may be stated in 
the form of an extremum or variational principle. An 
early textbook in this field is that by Zienkiewicz [I] in 
1967. An instructive treatment of variational methods 
is that by Schechter [2] in 1967. Glansdorff and 
Prigogine [3] in 1964 developed a variational 
principle-the concept of the local potential-which 
deals with transport phenomena. Currently the status 
of the local potential is somewhat in question. How- 
ever MacDonald [4] has surveyed several papers 
applying this principle to boundary layer problems, all 
of which employed the boundary-layer idealisation 
that x and y may be replaced by q = y/6(x). Mac- 
Donald presented conditions for equivalence of the 
procedures in these papers with a simpler solution 
method, which conditions are satisfied in all the cases 
reviewed, and suggested the quality of results is 
comparable with that obtained by Karman- 
Pohlhausen type integral techniques. The above 
boundary-layer idealisation of course is not used 
in the present work. 

The term “channel” denotes the fluid-filled region 
between two inward-facing parallel plane solid sur- 
faces, or “walls”. The walls normally have the same 
shape and are exactly opposed. The channel is open all 
around to fluid flow. In the present case, the walls are 
vertical. With the origin of co-ordinates at the foot of 
one wall, the x-direction is assigned vertical, and they- 
direction normal to the walls, since the principal flow 
will be vertical. The channel has considerable “depth” 
in the z-direction, so that the system is two- 
dimensional. The only thermal condition considered is 
that of uniform steady temperature T, of both walls, 
and a uniform undisturbed fluid temperature T’,, 
which is lower than TX,. All conditions are symmetrical 
about the channel midplane and steady with time. 

It has been well established by means of similarity 
transformations, the integral method, or experimental 
studies that for the elementary problem of narrow 
channels, at one extreme, and the single vertical plane 
wall at the other extreme, the heat-transfer relations 
may be put in the respective forms: 

Nu = A x (Gr x Pr) 

Nu = B x (Gr x Pr)‘/4 

(1) 

(2) 

where A is constant, and B is constant for a given value 
of Pr. We define non-dimensional parameters for the 
vertical channel as follows : 

Ra = gP( T,. - Tm P4 
VKl 

Gr = gP( 7. - Tm )b4 

Nu=Z V21 

Results for the narrow channel from Elenbaas [S], 
Bodoia and Osterle [6] and Dyer and Fowler [7] give 
in terms of the groups in equations (3) 

Nu = &Ru 

Re = &Gr. 

(4) 

(5) 

A similarity solution for the vertical plane wall by 
Ostrach [8] gives for Pr = 0.70 the heat-transfer 
correlation 

Nu = 0.510R~“~. (6) 

From Ostrach’s data, also for Pr = 0.70, a correspond- 
ing fluid flow correlation has recently been obtained by 
Al Rawi [9] : 

Re = 0.231 Gr’!‘. (7) 

The mean upward velocity used in forming the 
Reynolds number is that within the 2% velocity 
boundary layer at the top of the wall. Equations (6) 
and (7) remain precisely the same, whether in terms of 
the dimensionless groups for a wall of height 1 used by 
the original authors, or using the groups of equations 
(3). Hence the wall solutions for heat transfer and fluid 
flow are represented on the channel diagrams by the 
same equations (6) and (7). 

Elenbaas [5] in 1941 showed that a continuous 
solution exists which covers all conditions from the 
narrow channel through to the single wall, and 
numerical methods in the course of time have yielded 
such a solution, by Bodoia and Osterle [6] who in 1962 
used a finite difference method. The basis is to obtain 
the velocity, temperature and pressure at assigned 
nodes, one row at a time, starting from the entrance 
and proceeding upward. The transverse velocity com- 
ponent is included by means of the continuity equa- 
tion. At entry a uniform upward velocity and uniform 
temperature are prescribed. Pressure change along the 
channel is used to determine the channel height. 
Results are for Pr = 0.70, and Ra from about 0.1 to 
104. 

A finite element solution for laminar forced con- 
vection given by Tay and De Vahl Davis [lo] in 1971 
determined the temperature distribution in a channel 
for a constant property fluid in hydrodynamically 
developed flow, and entering at a uniform tempera- 
ture. The solution employed the local potential as a 
variational criterion, with satisfactory results. The 
channel was made long enough for the exit to be in the 
thermally developed region, for which the temperature 
profile is known. This appears to place an undue 
restriction on the size of the channel. 

In the present paper, progress towards a solution is 
made by way of two idealised cases. The first and more 
idealised case is termed “Stage l”, and uses two further 
simplifications. Fluid motion is allowed only in the 
upward (x) direction, and secondly the upthrust is 
taken to be due to a uniform fluid temperature within 
the channel. In the second case, termed “Stage 2”, fluid 
motion is again only in the vertical direction, but 
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upthrust is allowed to vary across the channel, and 
strictly compatible temperature and velocity va- 
riations obtained. The “full” problem with a second 
velocity component and a general variation of pres- 
sure, although much more complex, is within the 
scope of the methods described. This problem has been 
briefly attempted, but not yet with success. The 
objective of the present paper is to explore and test 
what may prove to be a more powerful analytical 
method than those previously used. 

2. BASIC EQUATIONS COMMON TO 

STAGES I AND 2 

A convective flow is induced through the channel by 
the action of a body force, in particular gravity. There 
is no internal heat generation. The Boussinesq approx- 
imation is employed, that is, viscous dissipation is 
neglected, fluid density is assumed constant except in 
forming the buoyancy term, and other fluid properties 
do not vary with temperature. Fluid motion is in the 
vertical (x) direction only. It follows that the velocity 
profile is the same from the channel entrance to the 
exit. Fluid temperatures increase with distance up the 
channel, with a region of heated fluid growing inward 
from each wall. Although steady-state conditions are 
being described, the governing equations are first of all 
written in the time-dependent form for derivation of 
the variational integrals. 

__=“~~~~~~~l-J 

at ay2 P ax 
(8) 

(9) 

The conditions regarding velocity and density require 
that pressure varies only with x, and further that 
pressure gradient with x is uniform. If the depression 
required to produce the velocity profile is neglected, 
free stream pressure within the channel is identical 
with external hydrostatic pressure. In particular 

ap 
ax= -Pm& (10) 

It is shown in Appendix 1 that for moderate tempera- 
ture difference in a perfect gas, the error thus incurred 
in pressure fall is very small at low Gr, and increases to 
a small and fairly constant value, for example 0.04, for 
wide channel conditions. If desired, corrections may be 
applied during solution. 

When the volume expansivity, fl, is much less than 1, 
the fluid equation of state may be written in two forms: 

P = P,P-NT-Tdl (11) 

f-f+ l+/I(T-T,). (12) 

Now equations (10) and (12) may be used to substitute 
T for p in equation (8) to give 

;=v$+g&T-T_J=O. (13) 

The boundary conditions at the channel walls are 

wheny=Oandy=b: 

u=OandT=T,,. 
(14) 

At x = 0 and x = 1 no independent conditions are 
stipulated. 

Introducing the dimensionless quantities 

(15) 

the governing equations and boundary conditions 
become 

Gr~=$+O=O 

(17) 

when Y = 0 and Y = 1, 

U=O and 8=1. 
(18) 

The characteristic form for natural convection, of 
coupled simultaneous equations in velocity and tem- 
perature, is retained. 

3. ANALYSIS FOR STAGE I 

As a first approximation, it is assumed that all the 
fluid between the walls is at a uniform temperature 
equal to T,, the mean value of an appropriate tempera- 
ture distribution. This will be more nearly true for 
relatively narrow channels. Equation (16) reduces to 

2 

g+e,=o 

0, has a value between 0 and 1 which will be 
determined later. The resulting parabolic velocity 
profile holds for all values of Ra, Gr, Pr and B: 

u +Y-Y2). (20) 

Substitution into the energy equation (17) gives 

ae a% a28 
Raz=B2,,1+,,t 

- Fe,(v- Y’); =o (21) 

when Y=O and Y= 1, 0=1. (22) 

These much more tractable uncoupled momentum 
and energy equations have the basic form of a forced 
convection problem. 

Only an outline of the solution procedure is given in 
these paragraphs, and details are deferred to Appendix 
2 of the paper. Following the Glansdorff and Prigogine 
[3] method of analysis, the equivalent functional 
E snergy is written for equation (21). This has the form of 
integrals in 0 over the problem area and line integrals 
in 0 along the boundaries. The distribution of 0 which 
minimises Eenergyr subject to the additional conditions 
imposed by equation (22), is the problem solution. 



1198 OLUSOJI OFI and H. J. HETHERINGTON 

Boundary conditions at entry and exit are now 
considered. Fluid entry temperature has commonly 
been put equal to T,, which is not strictly correct. A 
more serious difficulty is to find a realistic independent 
condition for the exit. However the line integrals in 
E energy constitute conditions at boundaries, which have 
a correspondence only to the governing equations, and 
are termed the “natural boundary conditions”. Where 
there are no reliable independent boundary con- 
ditions, the natural boundary conditions can and 
should be used, and they together with the other terms 
ofE energy define the problem completely. This feature is 
justified as follows. Applying the Euler-Lagrange test 

for example to Eenergy for Stage l-see Appendix 2, 
equation (A6)-gives : 

B2~+$-~B,(Y-Yz)$&=0 (24) 

+u- Y2)B-P: = 0, 
“__ 

along X = constant 

g = 0, along Y = constant. 

Equation (24) is the original energy equation (21) 
recovered, while equations (25) and (26) are the natural 
conditions at fluid boundaries parallel to the X and Y 
axes respectively, if no restriction is imposed at these 
boundaries. But when a specified condition is imposed 
at any boundary, the corresponding natural boundary 
condition no longer prevails-see the book by Schech- 
ter [2]. 

A finite element approximation is now applied. The 
problem area is divided into rectangular elements, and 
a simple variation of 8 assigned within each element. 
Due to symmetry, only half the channel, from one wall 
to the centre plane, has to be considered. Figure 1 
shows the division into 20 elements in the X-direction 
and 10 in the Y-direction used for Stage 1. The 
unknown quantities are now in general the values of 0 
at the 231 nodes selected. Along the mid-plane, nodes 
11 to 231 are merely treated as internal nodes-see [ 11. 
Along the wall at nodes 1 to 221, 6 equals 1. At the 
entrance and exit, terms obtained from the natural 
boundary conditions are added. The resulting simul- 
taneous equations in f3 form a banded matrix with a 
relatively small band-width. The solution was ob- 
tained on an Elliott 4130 computer. The independent 
parameters are seen to be Rayleigh number and ratio 
B. 

Finally the fluid mean temperature may be esti- 
mated. For each desired value of Rayleigh number and 
of width-to-height ratio B, an arbitrary uniform fluid 
temperature 0” is given the values 0.1,0.2,. . ,0.9, 1.0. 

2 3 4 5 6 7 8 9 

Y 

FIG. 1. Stage l--division of half channel into/20 x 10 
rectangular finite elements. 

0 0.2 0.4 0.6 0.8 1.0 

Prescribed, 8, 

FIG. 2. Stage 1 -determination of space mean fluid tempera- 
ture. 

The resulting temperature distributions are obtained, 
and space mean temperature 0, set against 8, as in Fig. 
2. Equality of 0, and 8, indicates the best value of 8,. 
The velocity profile and temperature distribution are 
then recalculated. 

4. ANALYSISFORSTAGE2 

In the pair of equations (16) and (17), with boundary 
conditions (18), both variables U and 0 appear in both 
equations. A Stage 1 solution with any values of Ra, Gr 
and ratio B will serve as the starting point for a gross 
iteration between the two equations. This method was 
preferred to the use of a functional for both equations 
taken together. A less fine division into 10 x 10 
elements (11 x 11 nodes) was used for Stage 2. The 
iteration procedure is as follows : 

(a) In the parabolic velocity profile_of a Stage 1 
solution, the value e,,, = 0.5 is taken in all cases for 
simplicity, that is 

U = 0.25( Y - Y’). (27) 

This velocity profile indicates an already available first 
approximate solution for 0. The choice of initial value 
for 8, does not affect the final result. 
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(b) The mean temperature along each set of vertical 

meshes is used to obtain a superior approximate 
solution for U. 

(c) The velocity at each column of nodes across the 
stream is used to obtain a superior approximate 
solution in 0. 

(d) Reiteration of operations(b) and(c) is continued 
until both solutions converge sufficiently. 

5. CORRELATION OF THEORETICAL RESULTS 

The dimensionless rate of heat transfer from unit 
horizontal “depth” in the Z-direction from one wall to 
the rising fluid is 

H= 
s 

0.5 

UB, dY (28) 
0 

where 0, is the temperature profile at the channel exit 
(X = 1). Also the dimensionless volume flow rate of 
fluid from unit depth of the entire channel is 

s 

0.5 

Q=2 UdY. (29) 
0 

It is easily shown that 

Nu=HxRa 

and 
Re = Q x Gr. 

(30) 

(31) 

0.6 

l9 

0.4 

0 0.3 0.4 0.6 0.6 

(a) 

U 

(For Pr=07, Ra =O.l) 

0 0.1 0.2 0.3 04 05 

Y 

FIG. 3. Stage 2-fluid velocity. Range of Grashof number. 

6. RESULTS 

(1) Velocity and temperature solutions for both 
Stage 1 and Stage 2 were computed for values of width- 
to-height ratio B from 1: 1 to 1: 1000, and for Ra from 
0.1 to lo’, with Pr = 0.1 throughout, having gases in 
view. Variation of B was found to have a negligible 

Transverse profiles 

0.6 

5 

Y 

1.0 

(b) Y=O 
Ra= IO4 

0.8 
Strsamwise profiles 

- 

0 0.2 04 0.6 0.6 I .o 

(b) X 

FIG. 4. Stage 2-fluid temperature. (a) Ro = 10’; (b) Ra = 104. 
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(a) Y 

Transverse profiles 

0 

(b) 

1.0. 

01 0.2 03 0.4 0.5 

Y 

0 01 0.2 03 04 05 

(cl Y 

FIG. 5. Stage 2-fluid temperature. 
(a) Channel entrsnce: Rrr = O.l-103; 
(b) channel exit: Ru = 0.1-10’; (c) 
extent of heated fluid:.Ro = IO*-lo5 

effect. Since B occurs only in the axial conduction term 
of equation (17), it follows that the contribution of 
axial conduction to the system heat transfer is neglig- 
ible. Also the terms of the functionals used which 
contain B or B2 may be omitted. However for the sake 
of generality, in Appendix 2 of this paper these terms 
are retained. Likewise, representative cases were com- 
puted both with and without the part of the natural 
boundary conditions representing axial conduction at 
entry and exit, and negligibly small effects found. These 

1200 OLUSOJI OFI and H. J. HETHERINGTON 

terms also may be discarded in this instance. Another 
very convenient property of the present system is that 0 
and Nu will give correlations against Ra, and U and Re 

will correlate against Gr, all independently of Pr. The 
values of U and (3 for Stage 1 generally resemble those 

for Stage 2, and being of less interest, they are not 
presented in detail. 

(2) Velocities and temperatures for Stage 2 are 
shown in Figs. 3-5. Figure 3 shows velocity profiles for 
most of the range of computation. For a gas with Pr 

= 0.7, the values of Gr taken give U corresponding to Q 
for Rn = 0.1, 1 . . 105. Stage 2 yields parabolic profiles 
only for Gr up to about 102, and thereafter the profiles 
become flatter. Figure 4 shows temperature distri- 

butions in the transition range between the narrow 
and the wide channel. The streamwise profiles parti- 

cularly show the freedom given by use of the natural 
boundary conditions at entrance and exit. The tem- 
peratures at entrance show in Fig. 5(a) a varied and 

coherent solution instead of a flat zero profile. In Fig. 
5(c) the region of heated fluid is shown extending below 
the channel entrance. Full temperature development 
at the exit, in so far as heated fluid reaches the mid- 
plane, is found for values of Ra up to 104. 

(3) Overall heat transfer and fluid flow results: Fig. 
6 shows Nu against Ru with logarithmic scales. For 
low Ru, all the channel relations merge with the 
narrow channel equation (4). For high Ra, the Stage 1 

result remains surprisingly close to that for Stage 2. 
The latter is almost identical with the solution of 
Bodoia and Osterle [6] over the whole range of 
computation. Figure 7 shows Re against Gr with 
logarithmic scales. Again for low Gr, all the channel 
relations merge with the narrow channel equation (5). 

For high Gr, the Stage 1 result diverges markedly from 
that of Stage 2, which is somewhat higher than the 
Bodoia and Osterle solution. For high Ra and Gr 

respectively, the heat transfer and fluid flow results all 
have the form of simple power laws. These are 
collected in Table 1. 

7. CONCLUSIONS 

(1) The Stage 1 procedure was not expected to give 
realistic results for natural convection at high values of 
Rtr and Gr. However it is very well suited for the 
analysis of laminar forced convection systems with 
hydrodynamically developed flow, since side flows are 
not present in these systems. 

(2) The Stage 2 overall results for both heat transfer 
and fluid flow are quite satisfactory, despite the 
restriction that fluid flow may be vertical only. The 
agreement with the Bodoia and Osterle solution shows 
that the gross influence of this restriction is not large, in 
the conditions described. 

(3) The status and capabilities of the local potential 
are perhaps not yet precisely known. However, the 
present results appear generally satisfactory, and also 
appear to account correctly for heat conduction and 
convection at boundaries within a fluid. It is a great 
advantage to have natural boundary conditions for 
use at the channel entrv and exit. 
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Wide channel (stage I ) 

IO- 
5- 

2- 

I- 

Ostrach (Pr=0.70) 

NU 

Result of Bodoio and Osterle 
(Pr=0.70) indicated thus 

Narrow channel 

0001 I I I I I I I I I I 
01 I 2 5 IO IO’ IO’ 104 I05 106 101 

Ro 

FIG. 6. Heat-transfer results: Nusselt number vs Rayleigh number. 

IO’ - 

102 - 

Re ,o-- 
5 

(Pr=0.70) 

Result of Bodoia and Osterle 
(Pr=0.70) indicated thus 

***-- 

01 I 2 5 IO I02 105 IO4 IOJ IO’ 

Gr 

FIG. 7. Fluid flow results: Reynolds number vs Grashof number. 

Table 1. Power law solutions for heat transfer at high Rayleigh number, 
and for fluid flow at high Grashof number 

Wide channel Stage 1 
Stage 2 
Bodoia and Osterle [6] 
(Pr = 0.7) 

Heat transfer 

Nu = O.~SORU’!~ 
Nu = 0.699RaLi4 
Nu = 0.680R~“~ 

Fluid flow 

*Re = 0.160Gr0.749 
Re = 0.725 GrO.’ ” 

Re = 0.817Gr”’ 

Single wall Ostrach [S] and Al Rawi [9] 
(Pr = 0.7) 

Nu = 0.510R~“~ Re = 0.231 Gr’!’ 

*This relation is quite far from actuality. 
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(4) In the open vertical channel, at a moderate value 
of Gr a local velocity minimum appears at the mid- 
plane, and becomes more pronounced with increase in 
Gr. The Bodoia and Osterle method is capable of 
reproducing this feature, unlike the Stage 2 procedure, 
or any other which lacks flow normal to the walls. 
Recourse to the fuller system of equations is necessary 
for detailed representation of the wide channel. 

(5) There are substantial differences between solu- 
tions for the wide channel and for the single wall. The 
wide channel values for heat transfer and fluid flow 
are greater by factors of 1.40 and 3.65 respectively. This 
disagreement will no doubt be resolved in due course. 
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APPENDIX I 

Pressure Full in the Open Vertical Channel 

Under the conditions of Stage 1 and Stage 2, the total fall in free stream pressure from entry to exit is 

PO -PI = fPUL + PYI. (Al) 

The proportional error, N, due to neglecting the first term will be evaluated. If N is small, it approximately equals the ratio of 
kinetic and hydrostatic pressure losses: 

’ Re’ 
-#K-T,.). W) 

We take a moderate temperature difference in a perfect gas, say T, = 300, T, = 330. Also /I = l/T. 

j?(IT;,.- T,) + 0.10. 

For narrow channels, Re = &Gr, u,,, = $I& Gr > 10. c 

N +&GrB(T,.-T,)z+&. 

For wide channels, Re + 0.9Gr’j2, and u,,, + tI 

N + 0.4/?( T,r - T,) 4 0.04. 

(A3) 

(A4) 

(A5) 

APPENDIX 2 

Staye I 

Details of Vuriutionul and Finite Element Analysis 

The equivalent functional for energy equation (21) is 

+ $h’,,,(Y-Yz)808-Bz~0 dY- ] {cr[g6’]dX. (46) 

0’ is defined as the value of 0 which gives the stationary value to the functional E. During the minimization procedure, o” is 
regarded as constant, but directly after taking the variation, we must put 0’ = &-see [Z] and [3]. 

The finite elements are now formed. The fluid temperature within a typical element e is given as a bilinear function of X and 
Y: 

t7 = A, +A,X+A,Y+A,XY. (.47) 

By substituting the coordinates of the four nodes i,j, k, m of the element, we obtain a set of four simultaneous equations thus: 
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(A91 

(AIO) 

or simply iV = VI {A) 
giving {A} = [T]-‘(O)’ 

and 0 = [P]{A} = [P][T]-‘{O}e 

where CP] = [LX, r, XYI 

By writing [Nl = [PI PI - i 

we have 0 = [N] {O}e = [N,, Nj, N,, NJ {eje 

where [N] is a function only of nodal coordinates of the element. 
The functional is now minimized. Substitution of the expression (AlO) for 0 into the expression (A6) for E, and differentiating 

E with respect to 0 at node i of one element e gives 

(All) 

Taking first of all the first term, which is the contribution of the internal nodes: 

$ W-J = ~2 $$ei + se, + . . . 

-Fe.(Y-Yy(Niei+N,e, + .,.$$ 1 dxdY 6412) 
or 

where [K]~ is a 4 x 4 element matrix such that 

Kij = B2dXdX+dYdY-10,,,(Y-Y2)Nj~ dXdY. 
aN, aNj dNi aNj Ra 

1 

(A13) 

(AI4) 

The second term in expression (Al 1) is the contribution of nodes at the region boundaries. The part of the natural boundary 
conditions corresponding to heat conduction at the entrance and exit having been discarded, the only part remaining is that 
corresponding to heat convection. That is 

6415) 

= s Ra 

cx 
1&,(Y-Y2)(N,0,+Nj0,+...)N,dY. 

Adding the contributions of all the elements surrounding node i and setting to zero gives the minimization equation in tI at that 
node. When there are n nodes, the system of linear equations thus obtained is of the form 

(A161 

and can be solved for values of 0 on the computer. 
Introduction of the imposed boundary condition completes the finite element formulation. Along the wall surface where the 

values of 0 are specified as unity, the terms of the corresponding rows and columns in the system matrix are all set to zero except 
the diagonal terms which are set to unity, as are also the corresponding terms in the column matrix C. 
The matrix of equation (A16) is banded. That is, the non-zero terms are concentrated around the leading diagonal of the matrix. 
This is a consequence of the manner in which it has been assembled from the contributions of each element. This effect is used to 
save computer time by storing only the rectangular band. Solution was by a modified Gaussian elimination method with back 
substitution. 

Stage 2 
In the momentum equation (16), 0 is a known function of Y. The equivalent functional is 

(AI7) 

There is also the imposed boundary condition that 

U =0 when Y = 0. (AIT0 

A solution is determined for U at 11 nodes evenly spaced from Y = 0 to Y = 0.5. These nodes form the bounds of 10 one- 
dimensional finite elements. When E is written for one element and the variation of U taken, the contribution at one node i of 
the element is 

(A19) 
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or 

In the energy equation (17), U is a known function of Y, and the equivalent functional is 

de 
+ RaU”eoe-B2-e dY- 

ax IS 
ds”edX. 

EY ay 
(A211 

A solution is determined for 0 at the 121 nodes at the corners of a 10 x 10 array of rectangular finite elements in the X-Y plane. 
After taking the variation of 0, the contribution from each element for one node i is 

The remaining parts of two separate solution are already described for Stage 1. 

DE METHODE DES ELEMENTS LA CONVECTION 
THERMIQUE NATURELLE DANS LES CANAUX ET OUVERTS 

R&me-On utilise la mtthode des elements en m&me temps principe variationel du 
des solutions numeriques approchees pour la 

un canal vertical et une temperature par&ale uniforme. conditions aux limites 
par technique variationnelle et a sortie du On a observe la 

du fluide verticale. 
Les temperatures et vitesses ascentionnelles des nombres de et 

Grashof variant entre 107. Les correlations entre les nombres de et Reynolds en 
bon accord la solution aux differences de Bodoia et et moins bon accord avec 

une solution de paroi unique verticale. 

DER METHODE DER FINITEN AUF DEN 
WARMEUBERGANG BE1 NATURLICHER KONVEKTION AN 

Zusammenfassung-Zur niiherungsweisen numerischen Losung der station&en, natilrlichen Konvektion in 
offenen vertikalen Kanllen mit gleichfijrmiger Wandtemperatur wird die Methode der finiten Elemente 
zusammen mit dem Variationsprinzip fur das lokale Potential verwendet. Die durch die Variationstechnik 
bedingten natiirlichen Randbedingungen werden fur Kanalein- und -austritt formuliert; die Untersuchung 
bleibt auf vertikale Stromungsgeschwindigkeiten beschrlnkt. Die Temperaturen und die aufwartsgerich- 
teten Stromungsgeschwindigkeiten werden fiir Rayleigh- und Grashof-Zahlen van 0,l bis 10’ ermittelt. Die 
Nusselt-Reynolds-Bexiehungen stimmen gut mit der mit finiten Differenzen gewonnenen Losung von 
Bodoia und Osterle iiberein; starkere Abweichungen ergeben sich im Vergleich mit der Losung fiir die 

einzelne, vertikale b’and. 

HPHMEHEHHE METO&% KOHEYHbIX 3JIEMEHTOB &BH PEIUEHHR 3AAAY 
KOHBEKTHBHOI-0 TEITJIOOEMEHA B OTKPbITOM BEPTHKAJILHOM KAHAJIE 

hEOTWHS - MeToA KOIie’IHbIX WIeMeHTOB BMeCTe C BapHaWiORHbIM npEiH@IIOM nOKaJIbHOr0 
norenqsmna ncnonbayercr nnn nonyremra npss6nmrcemn.rx ~manemrbrx pemeea# aanaq crarmo- 
HapHOtf JIaMHHapHOti WTeCTBeHHOfi KOIiBeKLWi B OlKpbITOM BepTHKaJIbHOM KaHaJIe C IIOCTOKHHOtt 

TeMneparypol ria cremcax. rpamiuHbIe ycno~ur Ha sxoAe H BbIxoAe 83 KaHana nonqramrcr aapsfa- 
I@i&HblMH MeTOAaMH. npeAIIOJIaraeTCa, ‘IT0 CKOpOCTb TWhXiSiII HMeeT TOJIbKO BepTHKaJIbHyIO 
KoMnoHeffly. ITony=IeHbr TeMnepaTypa H noAaeMHaa cKopocTb ~.r~a AIiana3oHa g5icej-I P3nen H 
~paCr0~ 0T 0,l ~0 10’. %BHCHMOCTH Owen HyCCeSIbTa H PeffHOnbACa xopomo CoBrIaAaIoT c 
aHanorHqWblhfH 3aBIicHMocT~, nonyreHHbrhm SoAor H OcTepne, w xyxe c pememieM, nonyuee- 

HbIM AJIII BepTHKaJIbHOti CTeHKH. 


